Tell us about yourself

I wanted to be a scientist for a really long time. I grew up in India—a place where science is highly valued and everyone wants to become an engineer or a doctor. As someone who had always been interested in basic science, I was a slight deviant in that sense.

Before high school, I was drawn toward robotics and artificial intelligence. At the time, someone in my family was attending grad school in the field, so that definitely contributed to my interest. My interest shifted to physics in high school, when I started reading more popular science books and watching popular science TV shows. I realized that, as long as I understood the concepts in physics, I did not need to memorize much in order to solve problems. My love for physics is rooted in my desire to understand how nature behaves and use concepts from nature in new areas.

Original Link:

https://www.bnl.gov/newsroom/news.php?a=212399

How did you become interested in science in general and photonics in particular? How did you end up in such an offbeat, unconventional and awesome career?

Light had always been something I was fascinated by. India has always had a strong tradition in optics. My interest was solidified when I completed my master’s degree in physics at the University of Hyderabad, India, which has a specialization in quantum optics. At this point, I was not sure if I wanted to do theory or experiment; I was open to both. After spending a summer in an experimental lab, I knew I wanted to be an experimentalist. I came to the United States to continue my studies at the University of Massachusetts–Lowell, where I received my PhD in physics. I then did postdoctoral work in integrated photonics at Princeton University, mostly making optical chips that do logic and signal processing functions—optical analogs of electronic chips. Moving on to my own independent group at CUNY as part of the Photonics Initiative, I started exploring both fundamental and applied questions pertaining to the interaction of light with matter. I have been lucky to have some fantastic students and post docs, and my group is one of the things that keeps me going and something I am very proud of!

What does research at the Laboratory for Nano and Micro Photonics focus on?

In 2014, while a professor at Queens College, Menon and his collaborators at the University of Michigan used light to bind together organic and inorganic semiconductors by sandwiching them between two mirrors that form a photon-trapping optical cavity. The combined matter demonstrates enhanced optical properties, such as light absorption, that could enable the development of more efficient solar cells and solid-state lighting.

Controlling interactions between light and matter involves two interrelated research areas in my lab: designing nanostructured materials that make light behave in ways it normally would not, and artificially engineering new classes of materials with which light interacts much more strongly. These areas are motivated by the quest to develop next-generation computing technologies, ultrasensitive sensors for chemical and biological detection, and high-efficiency energy harvesting systems

Why bring your research to the CFN?

Before coming to CCNY in 2014, I was at Queens College. Because Queens College is a small institution, I did not have access to state-of-the-art instrumentation needed to carry out ultrafast spectroscopy for my research. I also avoided projects that would require nanofabrication because Queens only had a small cleanroom with basic capabilities. Collaborating with someone who has access to the necessary tools is always an option, but that would mean the collaborator has to play a key role in the project. One of the problems in collaborating with another principal investigator is that my students would not get the hands-on training and experience that the investigator’s students would.

At CFN, my students learn ultrafast spectroscopy and nanofabrication techniques from CFN experts and perform all the measurements. Once I had access to CFN’s ultrafast spectroscopy tools, I soon realized there was also a fantastic nanofabrication facility there, and I started writing proposals for projects requiring nanofabrication. So CFN not only provided my group with access to state-of-art techniques for spectroscopy but also enabled us to expand our areas of research.

How does your work benefit the society?

I see a lot of potential in multiple areas. Medicine is already seeing progress in using photonics for imaging during surgery, and optical and photonics technologies are advancing entertainment display systems like virtual and augmented reality headsets. Though solar cells have been around for some time, photonics has been having a larger contribution lately because it is not enough to have solar cell materials that absorb light efficiently. We need materials that can efficiently manage the light, trapping it or slowing it down, for instance.

New areas include ultrafast LEDs for LiFi, which could overcome the bottlenecks of today’s wireless communication, and for signal processing and computing. I truly believe the photon is the best carrier of quantum information, though it might not be the best processor. Single-photon (quantum bit) generation and manipulation is going to be the next big wave of photonic applications. Quantum computers hold the power to perform calculations much quicker, solve problems beyond the reach of regular (classical) computers, and send information much more securely.